Transient Air-to-Fuel Ratio Control of an Spark Ignited Engine Using Linear Quadratic Tracking

نویسندگان

  • Stephen Pace
  • Guoming G. Zhu
چکیده

Modern spark ignited (SI) internal combustion engines maintain their air-to-fuel ratio (AFR) at a desired level to maximize the three-way catalyst conversion efficiency and durability. However, maintaining the engine AFR during its transient operation is quite challenging due to rapid changes of driver demand or engine throttle. Conventional transient AFR control is based upon the inverse dynamics of the engine fueling dynamics and the measured mass air flow (MAF) rate to obtain the desired AFR of the gas mixture trapped in the cylinder. This paper develops a linear quadratic (LQ) tracking controller to regulate the transient AFR based upon a control-oriented model of the engine port fuel injection (PFI) wall wetting dynamics and the air intake dynamics from the measured airflow to the manifold pressure. The LQ tracking controller is designed to optimally track the desired AFR by minimizing the error between the trapped in-cylinder air mass and the product of the desired AFR and fuel mass over a given time interval. The performance of the optimal LQ tracking controller was compared with the conventional transient fueling control based on the inverse fueling dynamics through simulations and showed improvement over the baseline conventional inverse fueling dynamics controller. To validate the control strategy on an actual engine, a 0.4 l single cylinder direct-injection (DI) engine was used. The PFI wall wetting dynamics were simulated in the engine controller after the DI injector control signal. Engine load transition tests for the simulated PFI case were conducted on an engine dynamometer, and the results showed improvement over the baseline transient fueling controller based on the inverse fueling dynamics. [DOI: 10.1115/1.4025858]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Air-Fuel Ratio Control of a Lean Burn SI Engine Using Fuzzy Self Tuning Method

Reducing the exhaust emissions of an spark ignition engine by means of engine modifications requires consideration of the effects of these modifications on the variations of crankshaft torque and the engine roughness respectively. Only if the roughness does not exceed a certain level the vehicle do not begin to surge. This paper presents a method for controlling the air-fuel ratio for a lean bu...

متن کامل

Optimization-based non-linear Control Law with Increased Robustness for Air Fuel Ratio Control in SI Engines

In spark ignition (SI) engines, the accurate control of air fuel ratio (AFR) in the stoichiometric value is required to reduce emission and fuel consumption. The wide operating range, the inherent nonlinearities and the modeling uncertainties of the engine system are the main difficulties arising in the design of AFR controller. In this paper, an optimization-based nonlinear control law is a...

متن کامل

Air to Fuel Ratio Control of Spark Ignition Engines Using Dynamic Sliding Mode Control and Gaussian - American Control Conference, Proceedings of the 1995

This paper deals air to fuel ratio control of a spark ignition engine, whose pollutant is a major cause of air pollution. A direct adaptive control using Gaussian neural networks is developed to compensate transient fueling dynamics and measurement error in mass air flow rate into the cylinder. The transient fueling compensation method is coupled with a dynamic sliding mode control technique th...

متن کامل

Air-to-fuel ratio control of spark ignition engines using Gaussian network sliding control

This paper treats air-to-fuel ratio control of a spark ignition engine. A direct adaptive control method using Gaussian neural networks is developed to compensate transient fueling dynamics and the measurement bias of mass air flow rate into the manifold. The transient fueling compensation method is coupled with a dynamic sliding mode control technique that governs fueling rate when the throttl...

متن کامل

Linear Parameter-Varying Lean Burn Air-Fuel Ratio Control for a Spark Ignition Engine

Maximization of the fuel economy of the lean burn spark ignition (SI) engine strongly depends on precise air-fuel ratio control. A great challenge associated with the air-fuel ratio feedback control is the large variable time delay in the exhaust system. In this paper, a systematic development of an air-fuel ratio controller based on post lean NOx trap (LNT) oxygen sensor feedback using linear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013